
Math 1220: Scientific Programming

Credit hours: 3 credit hours

Prerequisites: MATH 1200 with a minimum grade of C or placement test

Course Description

This course offers instruction in scientific programming using a current programming language. Problems, both
numerical and non-numerical, are programmed and solved using a personal computer.

Course Objectives

1. Establish a firm foundation in the principals of scientific programming
2. Solve problems using algorithms
3. Become familiar with a current programming language

Learning Outcomes

1. Understand and apply the principles of the five-step process for scientific programming (Problem-Solution-
Algorithm-Pseudocode-Source Code) by solving and documenting scientific programming projects

2. Employ basic C++ language and syntax to develop source code for scientific programming projects
3. Utilize fundamental principles of mathematical logic to define control structures for complex scientific

programming projects
4. Apply C++ structures for functions, input/output files, and arrays to solve large, complex, scientific programming

problems
5. Develop the professional skills to work as part of a scientific/engineering team by preparing technical

documentation for all parts of the five-step process for scientific programming

Course Topics

I. INTRODUCTION TO COMPUTING

A. Overview of computer technology
B. Introduction to the programming process

1. Problem definition to pseudocode

2. Source code

3. Compile/Link/Run

II. PROBLEM DEFINITION TO PSEUDOCODE

A. Well-defined problem
B. Deriving a solution
C. Algorithm: writing a recipe to implement the solution
D. Pseudocode: almost a high-level language code

III. WRITING THE SOURCE CODE: PART 1

A. Declaring variables
1. Data types and compatibility

B. Collecting data: input commands
C. Using commands and syntax to implement the pseudocode

1. Arithmetic operators
2. Elementary control loops

D. Displaying results: output commands
1. Formatting data

E. Documentation: include comments in the code

IV. RUNNING THE CODE

A. Compile/Link/Run
B. Debugging

V. WRITING THE SOURCE CODE: PART II

A. Using predefined functions
B. User-defined functions
C. Local vs. global variables and constants
D. Advanced techniques for using data in functions
E. Input/output via data files

VI. CONTROL LOGIC AND COMMANDS: MORE APPLICATIONS

A. If-else statements
B. Do-while loops
C. For-statements

VII. LIBRARIES OF FUNCTIONS

A. Predefined libraries
B. User defined libraries

VIII. Arrays

A. Introduction to arrays
B. Arrays in functions
C. Multidimensional arrays

