37

i

iR,
1t

e

s

R e e
e







16

2.1
2.2

2.3
24
2.5
2.6
2.7

2.8

" 2.9

2.10
2.11

2.12

2.13

2.14

2.15

hapter 2 Statics of Particles

Introduction

Force on a Particle. Resultant of
Two Forces

Vectors

Addition of Vectors

Resultant of Several Concurrent
Forces

Resolution of a Force into
Components

Rectangular Components of a
Force. Unit Vectors

Addition of Forces by Summing
X and Y Components
Equilibrium of a Particle
Newton’s First Law of Motion
Problems Involving the
Equilibrium of a Particle. Free-
Body Diagrams

Rectangular Components of o
Force in Space

Force Defined by Its Magnitude
and Two Points on lts Line of
Action

Addition of Concurrent Forces
in Space

Equilibrium of a Particle in Space

2.1

INTRODUCTION

In this chapter you will study the effect of forces acting on particles.
First you will learn how to replace two or more forces acting on a
given particle by a single force having the same effect as the original
forces. This single equivalent force is the resultant of the original
forces acting on the particle. Later the relations which exist among
the various forces acting on a particle in a state of equilibrium will
be derived and used to determine some of the forces acting on the
particle.

The use of the word “particle” does not imply that our study
will be limited to that of small corpuscles. What it means is that the
size and shape of the bodies under consideration will not significantly
affect the solution of the problems treated in this chapter and that
all the forces acting on a given body will be assumed to be applied
at the same point. Since such an assumption is verified in many
practical applications, you will be able to solve a number of engineer-
ing problems in this chapter.

The first part of the chapter is devoted to the study of forces
contained in a single plane, and the second part to the analysis of
forces in three-dimensional space.

2.2 FORCE ON A PARTICLE. RESULTANT
OF TWO FORCES

A force represents the action of one body on another and is generally
characterized by its point of application, its magnitude, and its direc-
tion. Forces acting on a given particle, however, have the same point
of application. Each force considered in this chapter will thus be
completely defined by its magnitude and direction.

The magnitude of a force is characterized by a certain num-
ber of units. As indicated in Chap. 1, the SI units used by engi-
neers to measure the magnitude of a f01ce are the newton (N) and
its multiple the kilonewton (kN), equal to 1000 N, while the U.S.
customary units used for the same purpose are the pound (Ib) and
its multiple the kilopound (kip), equal to 1000 lb. The direction
of a force is defined by the line of action and the sense of the
force. The line of action is the infinite straight line along which
the force acts; it is characterized by the angle it forms with some
fixed axis (Fig. 2.1). The force itself is represented by a segment of




that line; through the use of an appropriate scale, the length of this
segment may be chosen to represent the magnitude of the force.
Finally, the sense of the force should be indicated by an arrowhead.
It is important in defining a force to indicate its sense. Two forces
having the same magnitude and the same line of action but different
sense, such as the forces shown in Fig. 2.1a and b, will have directly
opposite effects on a particle.

Experimental evidence shows that two forces P and Q acting
on a particle A (Fig. 2.2a) can be replaced by a single force R which
has the same effect on the particle (Fig. 2.2¢). This force is called
the resultant of the forces P and Q and can be obtained, as shown
in Fig. 2.2b, by constructing a parallelogram, using P and Q as two
adjacent sides of the parallelogram. The diagonal that passes through
A represents the resultant, This method for finding the resultant is
lmown as the parallelogram law for the addition of two forces. This
law is based on experimental evidence; it cannot be proved or derived
mathematically.

2.3 VECTORS

1t appears from the above that forces do not obey the rules of addi-
tion defined in ordinary arithmetic or algebra. For example, two
forces acting at a right angle to each other, one of 4 Ib and the other
of 3 1b, add up to a force of 5 Ib, not to a force of 7 Ib. Forces are
not the only quantities which follow the parallelogram law of addi-
tion. As you will see later, displacements, velocities, accelerations, and
momenta are other examples of physical quantities possessing mag-
pitude and direction that are added according to the parallelogram
law. All these quantities can be represented mathematically by vec-
tors, while those physical quantities which have magnitude but not
direction, such as volume, mass, or energy, are represented by plain
numbers or scalars.

Vectors are defined as mathematical expressions possessing
magnitude and direction, which add according to the parallelo-
gram law. Vectors are represented by arrows in the illustrations
and will be distinguished from scalar quantities in this text through
the use of holdface type (P). In longhand writing, a vector may be
denoted by drawing a short arrow above the letter used to repre-
sent it (P) or by underlining the letter (P). The last method may
be preferred since underlining can also be used on a typewriter
or computer. The magnitude of a vector defines the length of the
arrow used to represent the vector. In this text, italic type will be
used to denote the magnitude of a vector. Thus, the magnitude of
the vector P will be denoted by P

A vector used to represent a force acting on a given particle
has a well-defined point of application, namely, the particle itself.
Such a vector is said to be a fixed, or bound, vector and cannot be
moved without modifying the conditions of the problem. Other
physical quantities, however, such as couples (see Chap. 3), are
represented by vectors which may be freely moved in space; these

{e)
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A

Fig. 2.6

vectors are called free vectors. Still other physical quantities, such
as forces acting on a rigid body (see Chap. 3), are represented by
vectors which can be moved, or slid, along their lines of action;
they are known as sliding vectors.t

Two vectors which have the same magnitude and the same
direction are said to be equal, whether or not they also have the same
point of application (Fig. 2.4); equal vectors may be denoted by the
same letter.

The negative vector of a given vector P is defined as a vector
having the same magnitude as P and a direction opposite to that of
P (Fig. 2.5); the negative of the vector P is denoted by —P. The
vectors P and —P are commonly referred to as equal and opposite
vectors. Clearly, we have

P+ (-P)=0

2.4 ADDITION OF VECTORS

We saw in the preceding section that, by definition, vectors add
according to the parallelogram law. Thus, the sum of two vectors P
and Q is obtained by attaching the two vectors to the same point A
and constructing a parallelogram, using P and Q as two sides of the
parallelogram (Fig. 2.6). The diagonal that passes through A repre-
sents the sum of the vectors P and Q, and this sum is denoted by
P + Q. The fact that the sign + is used to denote both vector and
scalar addition should not cause any confusion if vector and scalar
quantities are always carefully distinguished. Thus, we should note
that the magnitude of the vector P + Q is not, in general, equal to
the sum P + Q of the magnitudes of the vectors P and Q.

Since the parallelogram constructed on the vectors P and Q does
not depend upon the order in which P and Q are selected, we con-
clude that the addition of two vectors is commutative, and we write

2.1

1Some expressions have magnitude and direction, but do not add according to the
parallelogram law. While these expressions may be represented by arrows, they eannot
be considered as vectors. !

A group of such expressions is the finite rotations of a rigid body. Place a closes
book on a table in front of you, so that it lies in the usual fashion, with its front cover
up and its binding to the left. Now rotate it through 180° about an axis parallel to the
binding (Fig. 2.3¢); this rotation may be represented by an arrow of length equal to
180 units and oriented as shown. Picking up the book as it lies in its new position, rotate

(@} (b)
Fig. 2.3 Finife rotations of a rigid body




From the parallelogram law, we can derive an alternative
method for determining the sum of two vectors. This method, known
as the triangle rule, is derived as follows. Consider Fig. 2.6, where
the sum of the vectors P and Q has been determined by the paral-
lelogram law. Since the side of the parallelogram opposite Q is equal
to Q in magnitude and direction, we could draw only half of the
parallelogram (Fig. 2.7a). The sum of the two vectors can thus be
found by arranging P and Q in tip-to-tail fashion and then connect-
ing the tail of P with the tip of Q. In Fig. 2.7b, the other half of the
parallelogram is considered, and the same result is obtained. This
confirms the fact that vector addition is commutative.

The subtraction of a vector is defined as the addition of the
corresponding negative vector. Thus, the vector P — Q representing

the difference between the vectors P and Q is obtained by adding .

to P the negative vector —Q (Fig. 2.8). We write
P-Q=P+ (-Q) (2.2)

Here again we should observe that, while the same siga is used to
denote both vector and scalar subtraction, confusion will be avoided
if care is taken to distinguish hetween vector and scalar quantities.

We will now consider the sum of three or more vectors. The
sum of three vectors P, Q, and S will, by definition, be obtained by
first adding the vectors P and Q and then adding the vector § to the
vector P+ Q. We thus write

P+Q+S=(P+Q)+S (2.3)

Similarly, the sum of four vectors will be obtained by adding the
fourth vector to the sum of the first three. It follows that the sum
of any number of vectors can be obtained by applying repeatedly the
parallelogram law to successive pairs of vectors until all the given
vectors are replaced by a single vector.

it now through 180° about a horizontal axis perpendicular to the binding (Fig, 2.3b); this
second rotation may be represented by an arrow 180 units long and oriented as shown.

But the book could have heen placed in this final position through a single 180° rotation
about a vertical axis (Fig, 2.3¢), We conclude that the sam of the two 180° rotations repre-
sented by arrows directed respectively along the z and x axes is a 180° rotation represented
by an arrow directed along the y axis (Fig, 2.3d), Clearly, the finite rotations of a rigid

body do not ohey the parallelogram law of addition; therefore, they cannot be represented
by vectors.

1807
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Fig. 2.8

19




20

Statics of Parficles

Fig. 2.12

Fig. 2.13

If the given vectors are coplanar, ie., if they are contained in
the same plane, their sum can be easily obtained graphically. For this
case, the repeated application of the triangle rule is preferved to the
application of the parallelogram law. In Fig. 2.9 the sum of three
vectors P, Q, and § was obtained in that manner. The triangle rule
was first applied to obtain the sum P + Q of the vectors P and Q;
it was applied again to obtain the sum of the vectors P + Q and 8.
The determination of the vector P + Q, however, could have been
omitted and the sum of the three vectors could have been obtained
directly, as shown in Fig. 2.10, by arranging the given vectors in tip-
to-tail fashion and connecting the tail of the first vector with the tip
of the last one. This is known as the polygon rule for the addition of
vectors.

We observe that the result obtained would have been unchanged

-~ if, as shown in Fig. 2.11, the vectors Q and $ had been replaced by

their sum Q + 8. We may thus write

(2.4)

which expresses the fact that vector addition is associative. Recalling
that vector addition has also been shown, in the case of two vectors,
to be commutative, we write

P+Q+S8S=(P+Q)+S8
=8+ (Q+ P)

I

S+ (P+Q)

S+Q+P @35)

This expression, as well as others which may be obtained in the same
way, shows that the order in which several vectors are added together
is immaterial (Fig. 2.12).

Product of o Scolor and o Vedor.  Since it is convenient to
denote the sum P + P by 2P, the sum P + P + P by 3P, and,
in general, the sum of n equal vectors P by the product nP, we
will define the product nP of a positive integer 7 and a vector P
as a vector having the same direction as P and the magnitude nP.
Extending this definition to include all scalars, and recalling the
definition of a negative vector given in Sec. 2.3, we define the
product kP of a scalar k and a vector P as a vector having the same
direction as P (if k is positive), or a direction opposite to that of
P (if k is negative), and a magnitude equal to the product of P and
of the absolute value of k (Fig. 2.13).

2.5 RESULTANT OF SEVERAL CONCURRENT FORCES

Consider a particle A acted upon by several coplanar forces, i.e., by
several forces contained in the same plane (Fig. 2.14¢). Since the
forces considered here all pass through A, they are also said to be
concurrent. The vectors representing the forces acting on A may be
added by the polygon rule {Fig. 2.14b). Since the use of the polygon
rule is equivalent to the repeated application of the parallelogram
faw, the vector R thus obtained represents the resultant of the given
concurrent forces, i.e., the single force which has the same effect on




Fig. 2.14

the particle A as the given forces. As indicated above, the order in
which the vectors P, Q, and S representing the given forces are
added together is immaterial.

2.6 RESOLUTION OF A FORCE INTO COMPONENTS

We have seen that two or more forces acting on a particle may be
replaced by a single force which has the same effect on the particle.
Conversely, a single force F acting on a particle may be replaced by
two or more forces which, together, have the same effect on the
particle. These forces are called the components of the original force
F, and the process of substituting them for F is called resolving the
force ¥ into components.

Clearly, for each force F there exist an infinite number of pos-
sible sets of components. Sets of {wo components P and Q are the
most important as far as practical applications are concerned. Bat,
even then, the number of ways in which a given force F may be
resolved into two components is unlimited (Fig, 2.15). Two cases are
of particular interest:

1. One of the Two Components, P, Is Known. The second com-
ponent, Q, is obtained by applying the triangle rule and join-
ing the tip of P to the tip of F (Fig. 2.16); the magnitude and
direction of Q are determined graphically or by trigonometry.
Once Q has been determined, both components P and Q
should be applied at A.

2. The Line of Action of Each Component Is Known. The magni-
tude and sense of the components are obtained by applying the
parallelogram law and drawing lines, through the tip of F, par-
allel to the given lines of action (Fig. 2.17). This process leads
to two well-defined components, P and Q, which can be deter-
mined graphically or computed trigonometrically by applying
the law of sines.

Many other cases can be encountered; for example, the direc-
tion of one component may be known, while the magnitude of the
other component is to be as small as possible (see Sample Prob. 2.2).
In all cases the appropriate triangle or parallelogram which satisfies
the given conditions is drawn.

2.6 Resolution of a Force into Components

Fig. 2.15
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The preceding sections were devoted to the parallelogram law for the addition
of vectors and to its applications. . '

Two sample problems were presented. In Sample Prob. 2.1, the parallelogram faw
was used to determine the resultant of two forces of known magnitude and direc-
tion. In Sample Prob. 2.2, it was used to resolve a given force into two components
of known direction.

You will now be asked to solve problems on your own, Some may resemble one
of the sample problems; others may not. What all problems and sample problems
in this section have in common is that they can be solved by the direct application
of the parallelogram law.

Your solution of a given problem should consist of the following steps:

1. ldentify which of the forces are the applied forces and which is the resul-
tant. It is often helpful to write the vector equation which shows how the forces
are related. For example, in Sample Prob. 2.1 we would have

R=P+0

You may want to keep that relation in mind as you formlate the next part of your
solution.

2. Draw a parallelogram with the applied forces as two adjacent sides and
the resultant as the included diagonal (Fig. 2.2). Alternatively, you can use the
triangle rule, with the applied forces drawn in tip-to-tail fashion and the resultant
extending from the tail of the first vector to the tip of the second (Fig. 2.7).

3. Indicate oll dimensions. Using one of the triangles of the parallelogram, or
the triangle constructed according to the triangle rule, indicate all dimensions—
whether sides or angles—and determine the unknown dimensions either graphi-
cally or by trigonometry. If you use trigonometry, remember that the law of cosines
should be applied first if two sides and the included angle are known [Sample
Prob. 2.1], and the law of sines should be applied first if one side and all angles
are known [Sample Prob. 2.2].

If you have had prior exposure to mechanics, you might be tempted to ignore the
solution techniques of this lesson in favor of resolving the forces into rectangular
components. While this latter method is important and will be considered in the
next section, use of the parallelogram law simplifies the solution of many problems
and should be mastered at this time.




2.1 Two forces P and Q are applied as shown at point A of a hook
support. Knowing that P = 75 N and Q = 125 N, determine
graphically the magnitude and direction of their resultant using
(a) the parallelogram law, (b) the triangle rule.

%.2 Two forces P and Q are applied as shown at point A of a hook
support. Knowing that P = 60 lb and Q = 25 Ib, determine
graphically the magnitude and direction of their resultant using
{a) the parallelogram law, (b) the triangle rule.

2.3 The cable stays AB and AD help support pole AC. Knowing that the
tension is 120 1b in AB and 40 Ib in AD, determine graphically the
magnitude and direction of the resultant of the forces exerted by  Fig. P2.1 and P2.2
the stays at A using {g) the paraflelogram law, {b) the triangle rule,

QKN

Fig. P2.4

300 H b

Fig. P2.3

2.4 Two forces are applied at point B of beam AB. Determine graphi-
~ cally the magnitude and direction of their resultant using () the «
parallelogram law, (b} the triangle rule.

2.5 The 300-b force is to be resolved into components along lines g-a'
and b-b'. (a) Determine the angle o by trigonometry knowing that
the component along line a-' is to be 240 Ib. {k) What is the cor-
responding value of the component along b-b'? Fig. P2.5 and P2.6

2.6 The 300-1b force is to be resolved into components along lines ¢-a'
and b-b'. (@) Determine the angle & by trigonometry knowing that 5o
the component along line b-b’ is to be 120 Ib. () What is the cor-
responding value of the component along a-a'?

2.7 Two forces are applied as shown to a hook support. Knowing that
the magnitude of P is 35 N, determine by trigonometry (a) the
required angle a if the resultant R of the two forces applied to
the support is to be horizontal, {b) the corresponding magni-
tude of R. Fig. P2.7

fAnswers to all problems set in straight type (such as 2.1} are given at the end of the
book. Answers to problems with a number set in italic type {such as 2.4) are not given.
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Fig. P2.9 and P2.10
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For the hook support of Prob. 2.1, knowing that the magnitude of
P is 75 N, determine by trigonometry (@) the required magnitude
of the force € if the resultant R of the two forces applied at A is
to be vertical, (b) the corresponding magnitude of R. - '

A trolley that moves along a horizontal beam is acted upon by two
forces as shown. (a) Knowing that @ = 23° determine by trigo-
nometry the magnitude of the force P so that the resultant force
exerted on the trolley is vertical. (b)) What is the corresponding
magnitude of the resultant?

A trolley that moves along a horizontal beam is acted upon by two
forces as shown. Determine by trigonometry the magnitude and
direction of the force P so that the resultant is a vertical force of
2500 N,

A steel tank is to be positioned in an excavation. Knowing that
a = 20°, determine by trigonometry {(a) the required magnitude
of the force P if the resultant R of the two forces applied at A is
to be vertical, () the corresponding magnitude of R.

Fig. P2.11 and P2.12

A steel tank is to be positioned in an excavation. Knowing that
the magnitude of P is 500 lb, determine by trigonometry (q) the
required angle « if the resultant R of the two forces applied at A
is to be vertical, {b) the corresponding magnitude of R.

For the hook support of Prob. 2.7, determine by trigonometry
(a) the magnitude and direction of the smallest force P for which
the resultant R of the two forces applied to the support is hori-
zontal, (b) the corresponding magnitude of R.

For the steel tank of Prob. 2.11, determine by trigoncmetry
(a) the magnitude and direction of the smallest force P for which
the resultant R of the two forces applied at A is vertical, (b) the
corresponding magnitude of R.

Solve Prob. 2.2 by trigonometry.

Solve Prob. 2.3 by trigonometry.

Solve Prob. 2.4 by trigonometry.




2,78 Two structural members A and B are bolted to a bracket as shown.
Knowing that both members are in compression and that the force
is 15 kN in member A and 10 kN in member B, determine by
wrigonometry the magnitude and direction of the resultant of the
forces applied to the bracket by members A and B.

2.19 Two structural members A and B are bolted to a bracket as shown.
Knowing that both members are in compression and that the force
is 10 kN in member A and 15 kN in member B, determine by
trigonometry the magnitude and direction of the resultant of the
forces applied to the bracket by members A and B.

2,20 For the hook support of Prob. 27, knowing that P = 75 N and
a = 30° determine by trigonometry the magnitude and direction
of the resukant of the two forces applied to the support.

2.7 RECTANGULAR COMPONENTS OF A FORCE.
UNIT VECTORST

In many problems it will be found desirable to resolve a force into
two components which are perpendicular to each other. In Fig. 2.18,
the force ¥ has been resolved into a component F, along the x axis
and a component F, along the y axis. The parallelogram drawn to
obtain the two components is a rectangle, and F, and ¥, are called
rectangular components.

°|

Fig. 2.18

The x and y axes are usually chosen horizontal ‘and vertical,
respectively, as in Fig. 2.18; they may, however, be chosen in any
two perpendicular directions, as shown in Fig. 2.19. In determining
the rectangular components of a force, the student should think of
the construction lines shown in Figs. 2.18 and 2.19 as being parallel
to the x and y axes, rather than perpendicular to these axes. This
practice will help avoid mistakes in determining oblique compo-
nents as in Sec. 2.6.

tThe properties established in Secs. 2.7 and 2.8 may be 1eadﬁy extended to the
rectangular components of any vector quantity.

2.7 Rectangular Components of a Force. Unit
Yectors

Fig. P2.18 and P2.19

Fig. 2.19
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Fig. 2.21

Two vectors of unit magnitude, directed respectively along the
positive x and ¢ axes, will be introduced at this point. These vectors
are called wunit vectors and are denoted by i and j, respectively
(Fig. 2.20). Recalling the definition of the product of a scalar and a

vector given in Sec. 2.4, we note that the rectangular components

F, and F, of a force F may be obtained by multiplying respectively
the unit vectors i and j by appropriate scalars (Fig. 2.21). We write

F,=Fi ¥, =Fj 2.6)

and

2.7)

While the scalars F, and F, may be positive or negative, depending
upon the sense of F, and of F,, their absolute values are respectively
equal to the magnitudes of the component forces F, and F,. The
scalars F, and F, are called the scalar components of the force F,
while the actual component forces F, and ¥, should be referred to
as the vector components of F. However, when there exists no pos-
sibility of confusion, the vector as well as the scalar components of
F may be referred to simply as the components of F. We note that
the scalar component F, is positive when the vector component ¥,
has the same sense as the unit vector i (i.e., the same sense as the
positive x axis) and is negative when F, has the opposite sense. A
similar conclusion may be drawn regarding the sign of the scalar
component F,.

Denoting by F the magnitude of the force ¥ and by 6 the angle
between F and the x axis, measured counterclockwise from the posi-
tive x axis (Fig. 2.21), we may express the scalar components of I as
follows:

2.8)

We note that the relations obtained hold for any value of the angle
# from 0° to 360° and that they define the signs as well as the abso-
lute values of the scalar components F, and F,,.

EXAMPLE 7. A force of 800 N is exerted on a bolt A as shown in
Fig. 2.22a. Determine the horizontal and vertical components of the force.

* In order to obtain the correct sign for the scalar components F, and
I, the value 180° — 35° = 145° should be substituted for 6 in Eqgs. (2.8).
However, it will be found more practical to determine by inspection the
signs of F, and F, (Fig. 2.22b) and to use the trigonometric functions of the
angle @ = 35°. We write, therefore,

F, = —Fcosa = —(800 N) cos 35° = — 655 N

F,=+Fsino = +(800 N) sin 35° = +450 N
The vector components of ¥ are thus
F, = —(655 N)i F, = +(459 N)j

and we may write F in the form

F = —{655 N)}i + (459 N)j =




EXAMPLE 2. A man pulls with a force of 300 N on a rope attached to
a building, as shown in Fig. 2.23¢. What are the horizontal and vertical
components of the force exerted by the rope at point AP
It is seen from Fig. 2.23b that
F. = +{300 N} cosa E, = —(300 N) sine
Observing that AB = 10 m, we find from Fig. 2.23¢

8m 8m 4 Bm 6m 3

CSETUR T 10m 5 SmE=UB  10m 5
We thus obtain
F,=+(B300 N =+240N  F,=—(300 N); =—180 N

and write
F = (240 N)i — (180 N)j ®

When a force F is defined by its rectangular components F,
and F, {see Fig. 2.21), the angle @ defining its direction can be
obtained by writing

(2.9)

The magnitude F of the force can be obtained by applying the
Pythagorean theorem and writing

F=VF +F, (2.10)

or by solving for F one of the Egs. (2.8).

EMAMPLE 3. A force F = {700 b)i + (1500 Ib)j is applied to a bolt A,
Determine the magnitude of the force and the angle 0 it forms with the
horizontal.

First we draw a diagram showing the two rectangular components of
the force and the angle ¢ (Fig. 2.24). From Eq. (2.9), we write

' 0 — Fy 1500 Ib

M T 7001

Using a caleulator,? we enter 1500 Ib and divide by 700 Ib; computing
the arc tangent of the quotient, we obtain 8 = 65.0°. Solving the second of
Egs. (2.8) for F, we have

F, 15001
sin @  sin 65.0°

= 1655 Ib

F=

The Tast calculation is facilitated if the value of F, is stored when originally
entered; it nay then be recalled to be divided by sin 6. &

11t is assnmed that the caleilator nsed has keys for the computation of trigonometric
and inverse trigonometric functions. Some caleulators also have keys for the direct
conversion of rectangular coordinates into polar coordinates, and vice versa, Such
caleulators eliminate the need for the computation of trigonometric functions in
Examples 1, 2, and 3 and in problems of the same type.

2.7 Rectangular Componenis of a Force. Unit
Vectors

x
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Fig. 2.25

2.8 ADDITION OF FORCES BY SUMMING
X AND Y COMPONENTS

It was seen in Sec. 2.2 that forces should be added according to the
parallelogram law. From this law, two other methods, more readily
applicable to the graphical solution of problems, were derived in
Secs. 2.4 and 2.5; the triangle rule for the addition of two forces and
the polygon rule for the addition of three or more forces. It was also
seen that the force triangle used to define the resultant of two forees
could be used to obtam a trigonometric solution. )

~ When three or more forces are to be added, no practlcal trigo-
nometric solution can be obtained from the force polygon which
defines the resultant of the forces. In this case, an analytic solution
of the problem can be obtained by resolving each force into two
rectangular components. Consider, for instance, three forces P, Q,
and 8 acting on a particle A (Fig. 2.25a). Their resultant R is
defined by the relation

R=P+Q+S§ (2.11)
Resolving each force into its rectangular components, we write

Ri+Rj=Pi+Pj+ Qi+ Qj+Sd+3Sj
= (P, + Q, + S+ (P, +0Q, +5)j

from which it follows that
R=P+0Q,+S R =P +0Q,+8 (12
or, for short,

R, =3F, R, =3F, 2.13)

We thus conclude that the scalar components R, and R, of the
resultant R of several forces acting on a particle are obtained by
adding algebraically the corresponding scalar components of the
given forces.t

In practice, the determination of the resultant R is carried out
in three steps as illustrated in Fig, 2.25. First the given forces shown
in Fig. 2.25a are resolved into their x and y components (Fig. 2.25h).
Adding these components, we obtain the x and y components of R
(Fig. 2.25¢). Finally, the resultant R = Rd + R,j is determined by

- applying the parallelogram law (Fig. 2.25d). The procedure just

described will be carried out most efficiently if the computations are
arranged in a table. While it is the only practical analytic method for
adding three or more forces, it is also often preferred to the trigo-
nometric solution in the case of the addition of two forces.

fClearly, this result also applies to the addition of other vector quantities, such as
velocities, accelerations, or moementa.




- SAMPLE PROBLEM 2.3

o Four forces aot 01_1_ _bolt Aas shown Detemune the resultant of the folces__ .
' ','._"Onthebolt o SR T, S

Sl

RS Component, N

;-:'y Component N-:

e

. Thus, theé resultant R of the four forces is

S 996N 514 10 %‘fﬁ

_. Wlth a calc,ulator the last (.omputanon may be famhtated if the Value':":._é
2 “of B is stored when originally entered; it may then be 1ecalled to be dlv;ded 123-3
by sm ¢, (Also see the footnote on p 29) L - T
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§ f‘ou saw in the preceding lesson that the resultant of two forces may be deter-
& mined either graphically or from the trigonometry of an oblique triangle.

A. When three or more forces are involved, the determination of their resultant
R is best carried out by first resolving each force into rectangular components.
Two cases may be encountered, depending upon the way in which each of the
given forces is defined:

Case 1. The force F is defined by its magnitude F ond the angle « it forms
with the x axis. The x and y components of the force can be obtained by multi-
plying F by cos a and sin a, respectively [Example 1].

Case 2. The force F is defined by its magnitude F and the coordinates of
two points A and B on iis line of action (Fig. 2.23). The angle « that F forms
with the x axis may first be determined by trigonometry. However, the components
of F may also be obtained directly from proportions among the various dimensions
involved, without actually determining o [Example 2].

8. Rectangular components of the resultant. The components R, and R, of the
resultant can be obtained by adding algebraically the corresponding components
of the given forces [Sample Prob. 2.3].

You can express the resultant in vectorial form using the unit vectors i and j, which
are directed along the x and y axes, respectively:

R = Ri + Rj

Alternatively, you can determine the magnitude and direction of the resultant by
solving the right triangle of sides R, and R, for R and for the angle that R forms
with the x axis.




2.21 and 2.22 Determine the x and y components of each of the y

forces shown.

84 in.

«——800—»|

Dimensions
o soON 7 WT 80 in.
600
o) 1

p -
124 8 7 408 N O s *

800 90 in.

//' \\ .

Fig. P2.21
2.23 ond 2.24 Determine the x and y components of each of the

forces shown.

50

Fig. P2.23

|<—‘560 —>-|—<—480—>|

| 4510

Fig. P2.22

6015

40 1

Fig. P2.24

2,25 Member BD exerts on member ABC a force P directed along
line BD. Knowing that P must have a 300-lb horizontal compo-
nent, determine (¢) the magnitude of the force P, (b) its vertical

compon ent.

Fig. P2,25
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Fig. P2.29

2006 N

Fig. P2.35

150 N

GO N

2.26

2.27

2.28

2,29

2.30

2.31
2.32
2.33
2.34
2.35

Fig. P2.26

The hydraulic cylinder BD exerts on member ABC a force P
directed along line BD. Knowing that P must have a 7T50-N com-
ponent perpendicular to member ABC, determine (g) the magni-
tude of the force P, {b) its component parallel to ABC.

The guy wire BD exerts on the telephone pole AC a force P
directed along BD. Knowing that P must have a 120-N component
perpendicular to the pole AC, determine () the magmtude of the
force P, (b) its conmiponent along line AC.

The guy wire BD exerts on the telephone pole AC a force P directed
along BD. Knowing that P has a 180-N component along line AC,
determine {q) the magnitude of the force P, (b) its component in
a direction perpendicular to AC.

Member CB of the vise shown exerts on block B a force P directed
along line CB. Knowing that P must have a 1200-N horizontal
component, determine () the magnitude of the force P, (b) its verti-
cal component:

Cable AC exerts on beam AB a force P directed along line AC.
Knowing that P must have a 350-b vertical component, determine
(@) the magnitude of the force P, {b) its horizontal component.

Fig. P2.30
Determine the resultant of the three forces of Prob. 2.22.

Determine the resultant of the three forces of Prob. 2.24.
Determine the resultant of the three forces of Prob, 2.23.
Determine the resultant of the three forces of Prob. 2.21.

Knowing that & = 35°, determine the resultant of the three forces
shown.




2.36 Knowing that the tension in cable BC is 725 N, determing the
resultant of the three forces exerted at point B of beam AB.

l«—— 840 mm ——

Ny L = 1160 mm

800 mm

T8O N

Fig, P2.36

2.37 Knowing that @ = 40°, determine the resultant of the three forces
shown.

2,38 Knowing that & = 75°, determine the resultant of the three forces
shown.

2.39 For the collar of Prob. 2.35, determine (@) the required value of
a if the resultant of the three forces shown is to be vertical, (b) the
corresponding magnitude of the resuftant.

2.40 For the beam of Prob. 2.36, determine (¢) the required tension in
cable BC if the resultant of the three forces exerted at point B is to
be vertical, (b) the corresponding magnitude of the resultant.

2.41 Determine (@) the required tension in cable AC, knowing that
the resultant of the three forces exerted at point C of boom BC
must be directed along BC, (b) the corresponding magnitude of the
resultant,

2.42 Yor the block of Probs. 2.37 and 2.38, determine (a) the required
value of o if the resultant of the three forces shown is to be parallel
to the incline, (b) the corresponding magnitude of the resultant.

2.9 EQUILIBRIUM OF A PARTICLE

In the preceding sections, we discussed the methods for determining
the resultant of several forces acting on a particle. Although it has
not occurred in any of the problems considered so far, it is quite
possible for the resultant to be zero. In such a case, the net effect
of the given forces is zero, and the particle is said to be in equilibxium.
We thus have the following definition: When the resultant of all the
forces acting on a particle is zero, the particle is in equilibrium.

A particle which is acted upon by two forces will be in equi-
[ibrium if the two forces have the same magnitude and the same line
of action but opposite sense. The resultant of the two forces is then
zero. Such a case is shown in Fig. 2.26.

2.9 Bquilibrium of a Particle

120 ib

Fig. P2.41

4 100 th

Fig. 2.26
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¥y =3001

S
i

¥.=2001h 4
AL ST
Fig. 2.27

Ty =3001b

7, = 17321k

Fy =400
’ F . =2001h

Fig. 2.28

Another case of equilibrium of a particle is represented in
Fig. 2.27, where four forces are shown acting on A. In Fig. 2.28,
the resultant of the given forces is determined by the polygon rule.
Starting from point O with ¥; and arranging the forces in tip-to-tail
fashion, we find that the tip of F, coincides with the starting point
O. Thus the resultant R of the given system of forces is zero, and
the particle is in equilibrium.

The closed polygon drawn in Fig. 2.28 provides a graphical
expression of the equilibrium of A, To express algebraically the con-
ditions for the equilibrium of a particle, we write

(2.14)

Resolving each force F into rectangular components, we have
2(Fi+ Fj) =0 " or (ZF)i + (ZF))j=0

We conclude that the necéssary and sufficient conditions for the
equilibrium of a particle ar

(2.15)

Returning to the particle shown in Fig. 2.27, we check that the equi-
librium conditions are satisfied. We write

SF, = 300 b — {200 Ib) sin 30° — (400 Ib) sin 30°
=300 —1001b — 200lb =0

—173.2 b — (200 1b) cos 30° + (400 1b) cos 30°

= ~17321b — 17321 + 3464 b = 0

2.10 NEWTON’'S FIRST LAW OF MOTION

In the latter part of the seventeenth century, Sir Isaac Newton for-
mulated three fundamental laws upon which the science of mechan-
ics is based. The first of these laws can be stated as follows:

If the resultant force acting on a particle is zero, the particle
will remain at rest (if originally at rest) or will move with constant
speed in a straight line (if originally in motion).

From this law and from the definition of equilibrium given in
Sec. 2.9, it is seen that a particle in equilibrium either is at rest or
is moving in a straight line with constant speed. In the following
section, various problems concerning the equilibrium of a particle
will be considered.

2.11 PROBLEMS INVOLVING THE EQUILIBRIUM
OF A PARTICLE. FREE-BODY DIAGRAMS

In practice, a problem in engineering mechanics is derived from an
actual physical situation. A sketch showing the physical conditions of
the problem is known as a space diagram.

The methods of analysis discussed in the preceding sections
apply to a system of forces acting on a particle. A large number of
problems involving actual structures, however, can be reduced to
problems concerning the equilibrium of a particle. This is done by

SF,




choosing a significant particle and drawing a separate diagram show-
ing this particle and all the forces acting on it. Such a diagram is
called a fiee-body diagram.

As an example, consider the 75-kg crate shown in the space

diagram of Fig. 2.29a. This crate was lying between two buildings,
and it is now being lifted onto a truck, which will remove it. The crate
is supported by a vertical cable, which is joined at A to two ropes
which pass over pulleys attached to the buildings at B and C. Tt is
desired to determine the tension in each of the ropes AB and AC.

In order fo solve this problem, a free-body diagram showing a
particle in equilibrium must be drawn. Since we are interested in
the rope tensions, the free-body diagram should include af least one
of these tensions or, if possible, both tensions. Point A is seen to be
a good free body for this problem. The free-hody diagram of point
A is shown in Fig. 2.29b. It shows point A and the forces exerted on
A by the vertical cable and the two ropes. The force exerted by the
cable is directed downward, and its magnitude is equal to the weight
W of the crate. Recalling Eq. (1.4), we write

W = mg = (75 kg)(9.81 m/s*) = 736 N

and indicate this value in the free-body diagram. The forces exerted
by the two ropes are not known. Since they are respectively equal
in magnitude to the tensions in rope AB and rope AC, we denote
them by T,z and Ty¢ and draw them away from A in the directions
shown in the space diagram. No other detail is included in the free-
body diagram.

Since point A is in equilibrium, the three forces acting on it
must form a closed triangle when drawn in tip-to-tail fashion. This
force triangle has been drawn in ¥Fig, 2.29¢. The values Ty and Ty¢
of the tension in the ropes may be found graphically if the triangle
is drawn to scale, or they may be found by trigonometry. If the latter
method of solution is chosen, we use the law of sines and write

Tag Tac 736 N

sin 60°  sin40°  sin 80°
TAB == 647 N TAC - 4:80 N

When a particle is in equilibrium under three forces, the problem
can be solved by drawing a force triangle. When a particle is in equi-
librium under more than three forces, the problem can be solved graph-
ically by drawing a force polygon. If an analytic solution is desired, the
equations of equilibrium given in Sec. 2.9 should be solved:

3F, =0 3F,=0 (2.15)

These equations can be solved for no more than two unknowns;
similarly, the force triangle used in the case of equilibrium under
three forces can be solved for two unknowns.

The more common types of problems are those in which the
two unknowns represent (1) the two components (or the magnitude
and direction} of a single force, (2) the magnitudes of two forces,
each of known direction. Problems involving the determination of
the maximum or minimum value of the magnitude of a force are also
encountered {see Probs. 2.57 through 2.61).

2,11 Problems Involving the Equilibrium ot a 37
Particle. FreeBody Diagrams

b)) F reé-body diagram (c) Force triangle
Fig. 2.29

Photo 2.1 As illustrated in the above example,
it is possible to determine the lensions in the
cables supporting the shaft shown by treating
the hook as o particle and then applying the
equations of equilibrium 1o the forces acting on

the haok. :




SAMPLE PROBLEM 2.4

iy In a shlp unIoade ope1 ation, a 35001 auto:mobﬂe is supported by a cable
cor A mpe is tied to the cable at A and' puﬂed in order to center the automoblle :
_over its mtendeci posmon The angIe between the Lable and the vertical is 22,7 -
: Whatl is the'

S ;._Wlth a calcuIator we ﬁrst compute and store ﬂle value of the last quotlen. .
i Mulhplymg tIus value_sucees'nvely by sin 120° and sin 2 90, e obtam 2

SAMPLE PROBLEM 2.5

| ._..'Detemnne the magm’cude and direction: of the smallest force F whlch wﬂl;;..é-.'.ﬁ

maintain the package shown in-equilibrium. Note that the force exerted by' &
the rollers on; the package is perpendleular to the mc]me :

SOLUTION

?ree-Body Duxgmm We choose the packacre asa s froe body aSsum.lng.ﬂlal : __.:;
' 'e parhcle We" draw. the coneepondmg _free-body o

: Equshbnum. Candmon Smce only three fmcee. act” o1 the free body, we
~draw a force tnangle to express that it is in ethbnum Line 1-1 represents -
the known direction of P In order t6 obtain the minimum valiié of the force :.
- F; we choose the ditection of F perpendlcular to that of P From the geom-_ﬁ L
: etly of the tnangle obtained, we find. L T,
(294N)sm15°—761N jam15°'--'--* ST
o F = J6 } \ 3;15“’ ““»ﬁ




SAMPLE. pa@m&m 2. é

Determination of fhe Angles. FlTSt th _ angles &' ’
tion of cables AB. and AC are detérimined; We w

..'the hull;"as well as the drac force FD exerted by the flow..

S Equ:libﬁum Condmon We express that ﬂle hu}l is in equﬂlbnum by Wnt—
ling that the resultant of all forces is zero : L

_Substatutmg the BXPI‘BS‘HODS obtamed into. Eq (1) and factormg the: u
Vectors i and J, we have _ i

;'equdl o' zér0; We thus, obtam the followmg two quﬂllbl‘lmn equanons
f:quch express respectlveiy that the surm of the X components and the Sum-

':'(EF *0)

Tar = 42010 7 _

- a=6026" - In drawmg the free-body dlaglam we IaSSumed A sense: for each mﬂmown
© force: A positive sign in the answer indicates that the assumed sense is correct.
The complete force polygon may be drawn"to-'check the resu]ts
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When a particle is in equilibrium, the resultant of the forces acting on the
particle must be zero. Expressing this fact in the case of a particle under
coplanar forces will provide you. with two relations among these forces. As you saw
in the preceding sample problems, these relations may be used to determine two
unknowns—such as the magnitude and direction of one force or the magnitudes
of two forces,

Drawing o free-body diagram is the first step in the solution of a problem
involving the equilibrium of a particle. This diagram shows the particle and all the
forces acting on it. Indicate in your free-body diagram the magnitudes of kmown
forces, as well as any angle or dimensions that define the direction of a force. Any
unknown magnitude or angle should be denoted by an appropriate symbol. Noth-
ing else should be included in the free-body diagram.

Drawing a clear and accurate free-body diagram is a must in the solution of any
equilibrium problem. Skipping this step might save you pencil and paper, but is very
likely to lead you to a wrong solution.

Case 1. If enly three forces are involved in the free-body diagram, the rest of
the solution is best carried out by drawing these forces in tip-to-tail fashion to
form a force triangle. This triangle can be solved graphically or by trigonometry
for no more than two unknowns [Sample Probs. 2.4 and 2.5].

Case 2. i more than three forces are invelved, it is to your advantage to use
an analytic solution. You select x and y axes and resolve ¢ach of the forces shown
in the free-body diagram into x and y components. Expressing that the sum of the
x components and the sum of the y components of all the forces are both zero,
you will obtain two equations which you can solve for no more than two unknowns
[Sample Prob. 2.6].

Tt is strongly reconmmended that when using an analytic solution the equations of
equilibrium be written in the same form as Egs. (2) and (3) of Sample Prob. 2.6.
The practice adopted by some students of initially placing the unknowns on the
left side of the equation and the known quantities on the right side may lead to
confusion in assigning the appropriate sign to each term.

We have noted that regardless of the method used to solve a two-dimensional
equilibrium problem we can determine at most two unknowns. If a two-dimensional
problem involves more than two unknowns, one or more additional relations must
be obtained from the information contained in the statement of the problem.




2.43 Two cables are tied together at C and are loaded as shown. Know-
ing that & = 20°, determine the tension (2} in cable AC, (b) in
cable BC.

2.44 Two cahles are tied together at C and are loaded as shown. Deter- -
mine the tension (z} in cable AC, (b) in cable BC.

200 kg

Fig. P2.43

Fig. P2.44

2.45 Two cables are tied together at C and are loaded as shown. Know-
ing that P = 500 N and & = 60°, determine the tension in (@) in
cable AC, (b) in cable BC. Fig. P2.45

2.46 Two cables are tied together at C and are loaded as shown. Deter-
mine the tension (z} in cable AC, (b} in cable BC.

200 kg

Fig. P2.46
41




472  Statics of Posticles . ) 2,47 Knowing that « = 20°, determine the tension (g) in cable AC, (b) in
rope BC.

Fig. P2.47

2.48 Knowing that & = 55° and that boom AC exerts on pin C a force
directed along line AC, determine (@) the magnitude of that force,
(b) the tension in cable BC.

2.49 Two forces P and Q are applied as shown to an aircraft connection,
Knowing that the connection is in equilibsinm and that P = 500 Ib
and @ = 650 b, determine the magnitudes of the forces exerted
on the rods A and B.

300 i

Fig. P2.48

- Fig. P2.49 and P2.50

2.50 Two forces P and Q are applied as shown to an aireraft connection.
Knowing that the connection is in equilibrium and that the mag-
nitudes of the forces exerted on rods A and B are F, = 750 Ib and
Fg = 400 Ib, determine the magnitudes of P and Q.

2.51 A welded connection is in equilibrium under the action of the four
forces shown. Knowing that F, = 8 kN and F = 16 kN, determine
the magnitudes of the other two forces.

2.52 A welded connection is in equilibrium under the action of the four
forces shown. Knowing that F4, = 5 kN and Fp, = 6 kN, determine
Fig. P2.51 and P2.52 the magnitudes of the other two forces.




2.53

2.54

2.55

2.56

2.57

2,58
2.59

2.60

Two cables Hed together at C are loaded as showm. Knowing that Q =
60 1b, determine the tension () in cable AC, {b) in cable BC.

Two cables tied together at C are loaded as shown. Determine the
range of values of Q for which the tension will not exceed 60 Ib in
either cable.

A sailor is being rescued using a boatswain’s chair that is suspended
from a pulley that can roll freely on the support cable ACB and is
pulled at a constant speed by cable CD. Knowing that a = 30°
and 8 = 10° and that the combined weight of the boatswain’s chair
and the sailor is 900 N, determine the tension (@) in the support
cable ACB, {b) in the traction cable CD.

Fig. P2.55 and P2.56

A sailor is being rescued using a boatswain’s chair that is suspended
from a pulley that can roll freely on the support cable ACB and is
pulled at a constant speed by cable CD. Knowing that @ = 25°
and # = 15° and that the tension in cable CD is 80 N, determine
(@) the combined weight of the boatswain’s chair and the sailos,

{h} the tension in the support cable ACB.

For the cables of Prob. 2.45, it is known that the maximum allow-

able tension is 600 N in cahle AC and 750 N in cable BC. Determine

() the maximum force P that can be applied at C, {b) the corre-
sponding value of e

For the situation described in Fig. P2.47, determine {g) the value
of o for which the tension in rope BC is as small as possible, (b) the
corresponding value of the tension.

For the structure and loading of Prob. 2.48, determine (a) the
value of o for which the tension in cable BC is as small as possible,
{b) the corresponding value of the tension.

Knowing that portions AC and BC of cable ACB must be equal,
determine the shortest length of cable that can be used to support
the load shown if the tension in the cable is not to exceed 870 N.

Fig. P2.53 and P2.54

Fig. P2.60

Problems
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‘44  Stoties of Particles 2.63% Two cables tHed together at C are loaded as shown, Knowing

: that the maximum allowable tension in each cable is 800 N, deter-
mine (a) the magnitude of the largest force P that can be applied
at C, (b) the corresponding value of e

Fig. P2.61 and P2.62

2.62 Two cables tied together at C are loaded as shown. Knowing that
the maximum allowable tension is 1200 N in cable AC and 600 N
in cable BC, determine (g} the magnitude of the largest force P
that can be applied at C, (b) the corresponding value of o

20in. = &3 Collar A is comnected as shown to a 50-Ib load and can stelon a

frictionless horizontal rod. Determine the magnitude of the force
P required to maintain the equilibrium of the collar when (a) x =

45, (b)x = 15 in.

2.64 Collar A is connected as shown to 2 50-1b load and can slide on a
frictionless horizontal rod. Determine the distance x for which the
. Fig. P2.63 and P2.64 collar is in equilibrium when P = 48 Ib.

" 2.65 A 160-kg load is supported by the rope-and-pulley arrangement
shown, Knowing that 8 = 20°, determine the magnitude and direc-
tion of the force P that must be exerted on the free end of the
rope to maintain equilibrium. (Hin#: The tension in the rope is the
same on each side of a simple pulley. This can be proved by the
methods of Chap. 4.)

2.66 A 160-kg load is supported by the rope-and-pulley arrangement
shown. Knowing that o = 40°, determine (o) the angle B, (b) the
magnitude of the force P that must be exerted on the free end of
the rope to maintain equilibrium. {See the hint for Prob. 2.65.)

2.67 A 600-1b crate is supported by several rope-and-pulley arrange-
ments as shown. Determine for each arrangement the tension in
the rope. (See the hint for Prob. 2.65.)

160 kg
Fig. P2.65 and P2.66

Fig. P2.67



2.68 Solve parts b and d of Prob. 2.67, assuming that the free end of
the rope is attached to the crate.

2.69 A load Q is applied to the pulley C, which can roll on the cable ACB.
The pulley is held in the position shown by a second cable CAD,
which passes over the pulley A and supports a load P. Knowing
that P = 750 N, determine {#) the tension in cable ACB, (b) the
magnitude of load Q.

2.70 An 1800-N load Q is applied to the pulley C, which can roll on the
cable ACB. The pulley is held in the position shown by a second cable
CAD, which passes over the pulley A and supports a load P, Determine
(a) the tension in cable ACB, (b} the magnitude of load P.

2.12 RECTANGULAR COMPONENTS
OF AFORCE IN SPACE

The problems considered in the first part of this chapter involved
only two dimensions; they conld be formulated and solved in a single
plane. In this section and in the remaining sections of the chapter,
we will discuss problems involving the three dimensions of space.

Consider a force ¥ acting at the origin O of the system of
rectangular coordinates x, y, z. To define the direction of ¥, we draw
the vertical plane OBAC containing F (Fig, 2.30¢). This plane passes
through the vertical y axis; its orientation is defined by the angle ¢
it forms with the xy plane. The direction of F within the plane is
defined by the angle 6, that F forms with the ¢ axis. The force F
may be resolved into a Vemca] component F, and a horizontal com-
ponent Fy,; this operation, shown in Fig. 2.30b, is carried out in plane
OBAC according to the rules developed in the first part of the chap-
ter. The corresponding scalar components are

F, = F cos 0, Fy = Fsin 6, (2.16)
But F, may be resolved into two rectangular components F, and F,
along the x and z axes, respectively. This operation, shown in Fig. 2.30c,

is carried out in the xz plane. We obtain the following expressions for
the corresponding scalar components:

F, = Fycos¢ = Fsinf, cosd
F, = Fp sin = Fsin f, sin ¢
The given force F has thus been resolved into three rectangular vec-
tor components F,, F,, F_, which are directed along the three coor-
dinate axes.
Applying the Pythagorean theorem to the triangles OAB and
OCD of Fig. 2.30, we write
F? = (0A)* = (OB)® + (BA)* = F; + Fﬁ
F2 = (0C) = (ODY + (DC)? = F? + F?
Eliminating F# from these two equations and solving for F, we obtain
the following relation between the magnitude of ¥ and its rectangular
scalar components: '

(2.17)

(2.18)

212 Rectangular Components of & Foree
in Space

Fig. P2.69 and P2.70
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