Beer's Law calculations

This is a review of the steps used in solution calculations and using Beer's Law to analyze a $\mathrm{K}_{2} \mathrm{CrO}_{4}$ solution of unknown molarity. First one prepares a series of standard $\mathrm{K}_{2} \mathrm{CrO}_{4}$ solutions.

1. Preparation of 50.00 mL of $0.400 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ solution.
$(0.400 \mathrm{~mol} \mathrm{salt} / \mathrm{L})(0.0500 \mathrm{~L})(194 \mathrm{~g} \mathrm{salt} / \mathrm{mol})=3.88 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4}$ needed.
Add 3.88 g of the salt to a 50.00 mL volumetric flask, add enough water to dissolve it and then dilute to the calibration mark with water. Mix well.
2. Prepare 50.00 mL of 0.300 M solution of the salt from the 0.400 M solution.

Use the dilution formula: $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$(\mathrm{O} .400 \mathrm{M})\left(\mathrm{V}_{1}\right)=(0.300 \mathrm{M})(50.00 \mathrm{~mL})$
$\mathrm{V}_{1}=37.5 \mathrm{~mL}$ (the volume of the 0.400 M salt which must be diluted to 50.00 mL to give a 0.300 M solution. 37.5 mL of the 0.400 M solution is added to a 50.00 mL volumetric flask and water added to the calibration mark.
3. Preparation of a calibration curve.

Using the techniques in steps 1 and 2 above a series of different concentrations of the salt are made and their absorbance measured to give the following data.

$\left[\mathrm{K}_{2} \mathrm{CrO}_{4}\right], \mathrm{M}$	Absorbance, A
0.000	0.000
0.100	0.145
0.200	0.255
0.300	0.415
0.400	0.525

A graph of Absorbance (y-axis) versus concentration (x-axis) is then plotted and its slope, $\Delta y / \Delta x$, is evaluated. See Using Graphical Analysis 3.1.1 or Graphing in Excel references for plotting the graph. Graphs using these two programs are shown on pages 2 and 3.

4．Evaluation of the molarity of an unknown $\mathrm{K}_{2} \mathrm{CrO}_{4}$ solution．

The absorbance of the unknown solution is measured under the same conditions as the standard solutions．Its absorbance is 0.250 ．Since slope（m）＝Absorbance $/$ concentration，$\left[\mathrm{K}_{2} \mathrm{CrO}_{4}\right]=$ absorbance $/$ slope $=0.250 / 1.32 / \mathrm{M}=0.189 \mathrm{M}$

A more accurate method is using the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ formula obtained from the plotted graph where y is absorbance and x is the concentration．

Thus $0.250=1.32 \mathrm{x}+0.004$ and x is 0.186 M ．

Beer＇s Law Using Graphical Analysis 3．1．1

㞕Untited＊Graphical Analysis ज丁］区

File Edit Data Analyze Insert Options Page Help

Beer's Law Using Excel

