NAME DATE | REQUESTION: Solution: $v_A = -(10 \text{ rad/s})$ $v_{A/B} = v_A - (10 \text{ rad/s})$ | Rene disk rota What is the value in the value is the value in the value in the value in the value is the value in the value in the value in the value is the value in the value in the value in the value is the value in valu | relocity of part of the second | e earth-f
the fix
point A | relativ | coording to provide the provident coordinate provid | inate O at point | | | | y A O O O O O O O O O O O O O O O O O O | B | 0 rad/s | |--|--|--|---------------------------------|---------------|--|------------------|--|--|---|---|---|---------| | Solution: $v_A = -(10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ | Reme disk rota What is the value on of point own? | ates about relocity of pon? It A relative | the fix | relativ | oint (ve to p | O at | | | | | | | | Solution: $v_A = -(10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ | Reme disk rota What is the value on of point own? | ates about relocity of pon? It A relative | the fix | relativ | oint (ve to p | O at | | | | | | | | REQUESTION: Solution: $v_A = -(10 \text{ rad/s})$ $v_{A/B} = v_A - (10 \text{ rad/s})$ | ne disk rota What is the v instant shown on of poin own? | ates about relocity of pon? It A relative | the fix | relativ | oint (ve to p | O at | | | | | | | | REQUESTION: Solution: $v_A = -(10 \text{ rad/s})$ $v_{A/B} = v_A - (10 \text{ rad/s})$ | ne disk rota What is the v instant shown on of poin own? | ates about relocity of pon? It A relative | the fix | relativ | oint (ve to p | O at | | | | | | | | REQUESTION: Solution: $v_A = -(10 \text{ rad/s})$ $v_{A/B} = v_A - (10 \text{ rad/s})$ | What is the venstant shows on of point own? | relocity of part of the second | point A | relativ
WI | re to p | ooint
s the | | | | | | | | REQUES Solution: $v_A = -(10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $v_{A/B} = (10 \text{ rad})$ | on of poin own? | a? t A relativ | 1 1 | W | hat is | s the | | | 2 | ft | | | | Solution: $v_A = -(10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ | on of poin own? | t A relativ | ve to p | Wipoint | hat is B at | s the _ t the _ | | | 2 | ft | B | x | | Solution: $v_A = -(10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ | on of poin own? | t A relativ | ve to p | point | B at | t the | | | 2 | ft | B | x | | Solution: $v_A = -(10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UIRED: | | | | | | | | 2 | ft | | | | Solution: $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UTION | | | | | | | | | | | | | Solution: $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UTION | | | | | | | | | | | | | Solution: $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UTION | | | | | | | | | | | | | Solution: $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UTION | | | | | | | | | | | | | Solution: $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UTION | | | | | | | | | | | | | Solution: $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UTION | | | | | | | | | | | | | Solution: $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - (10 \text{ rad})$ $a_A = -(10 \text{ rad})$ | UTION | | | | | | | | | | | | | Solution:
$\mathbf{v}_A = -(10 \text{ radio})$
$\mathbf{v}_B = (10 \text{ radio})$
$\mathbf{v}_{A/B} = \mathbf{v}_A - (10 \text{ radio})$ | | | | | | | | | | | | | | Solution:
$\mathbf{v}_A = -(10 \text{ radio})$
$\mathbf{v}_B = (10 \text{ radio})$
$\mathbf{v}_{A/B} = \mathbf{v}_A - (10 \text{ radio})$ | | | | | | | | | | | | | | Solution:
$\mathbf{v}_A = -(10 \text{ radio})$
$\mathbf{v}_B = (10 \text{ radio})$
$\mathbf{v}_{A/B} = \mathbf{v}_A - (10 \text{ radio})$ | | | | | | | | | | | | | | Solution:
$\mathbf{v}_A = -(10 \text{ radio})$
$\mathbf{v}_B = (10 \text{ radio})$
$\mathbf{v}_{A/B} = \mathbf{v}_A - (10 \text{ radio})$ | | | | | | | | | | | | | | Solution:
$\mathbf{v}_A = -(10 \text{ radio})$
$\mathbf{v}_B = (10 \text{ radio})$
$\mathbf{v}_{A/B} = \mathbf{v}_A - (10 \text{ radio})$ | | | | | | | | | | | | | | $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - 0$ $v_{A/B} = v_A - 0$ | rad/s)(2 ff) $i = -(20)$ | ft/s\i | | | | | | | | | | | | $v_A = -(10 \text{ rad})$ $v_B = (10 \text{ rad})$ $v_{A/B} = v_A - 0$ $v_{A/B} = v_A - 0$ | rad/s)(2 ft) $i = -i2$ 0 | ff/s)i | | | | | | | | | | | | $\mathbf{v}_B = (10 \text{ rad} a)$ $\mathbf{v}_{A/B} = \mathbf{v}_A - \mathbf{v}_A$ $\mathbf{a}_A = -(10 \text{ rad} a)$ | rad/s)(2 ft)i = -(20 | ft/s)i | | | | | | | | | | | | $v_{A/B} = v_A - \frac{1}{2}$ $a_A = -(10 \text{ s})$ | ,,. (20 | 103/1 | | | | | | | | | | | | $a_A = -(10 \text{ rs})$ | $\mathbf{j}(\mathbf{s})(2 \text{ ft})\mathbf{j} = (20 \text{ ft/s})$ | s) j | | | | | | | | | | | | $a_A = -(10 \text{ rs})$ | $-v_B = (-20i - 20i)$ | lj) ft/s | $a_{P} = -(10 \text{ m})$ | $rad/s)^2(2 ft)j = -(2$ | 200 ft/s ²)j | | | | | | | | | | | | (20 2) | $rad/s)^2(2 ft)i = -(2$ | 200 ft/s ²)i | | | | | | | | | | | | - | - (200) 20 | oi> e4-2 | | | | | | | | | | | | $\mathbf{a}_{A/B} = \mathbf{a}_A$ | $-a_B = (200i - 20)$ | 0)) 105 |