NAME DATE | | EK | - | | | | | F | R | OB | LE | M: | | | | | | | | | | | |--|--|---|-------------------------------------|----------------------------------|-----------------------------|------------------------|----------|--------|----------------|------|------|--|--|---|----|----|------|-----|------|------|--| | G 17 | /EN | | | | | | | | | | | | | v | | | | | | | | | GI | VEI | imultaries and | neous
l eleva | ly la | unch | ed fr | rom | O w | ith t | he ii | A annitial the | velo | oci- | | | | | | 10 n | n/s | | | | | of projection of projection of the | ectile | A re | elativ | e to | pro | jecti | le B | (a) | at t | = 0 | .5 s | | | | F. | 1 | | | 10 | / | | | | | | | | | | | | | | | | | | | 00 | В | 7 | 10 r | 11/8 | | | | | | | | | | | | | | | | | | 60 | 0° | | 30° | 1 | 1 | RE | ĠП | IRE | ED | • | So | ILU | TIC | DN | : | TIC | ЭN | Solution | : | | | | + sin 6 | 0°j) | | | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ | :
81 m/s²j) | t + (10 | m/s)(c | os 60°i | | | | | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ $v_B = -(9.3)$ $v_{A/B} = v_A$ | :
81 m/s ² j)
81 m/s ² j)
- v _B = | at + (10)
at + (10)
at + (10) | m/s)(c
m/s)(c
s)(-0.3e | os 60°i
os 30°i | + sin 3 | | | | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ $v_B = -(9.3)$ $v_{A/B} = v_A$ $v_{A/B} = (-5)$ Since $v_{A/B}$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | ot + (10
ot + (10
ot (10 m/s | m/s)(c
m/s)(c
i)(-0.3 | os 60° i
os 30° i
66i + 0. | + sin 3 | 0 ° <i>j</i>) | same fo | r both | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ $v_B = -(9.3)$ $v_{A/B} = v_A$ $v_{A/B} = (-5)$ Since $v_{A/B}$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | ot + (10
ot + (10
ot (10 m/s | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | same for | | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ $v_B = -(9.3)$ $v_{A/B} = v_A$ $v_{A/B} = (-5)$ Since $v_{A/B}$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (100) + | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ $v_B = -(9.3)$ $v_{A/B} = v_A$ $v_{A/B} = (-5)$ Since $v_{A/B}$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (100) + | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | | | Solution
$\mathbf{v}_A = -(9.3)$
$\mathbf{v}_B = -(9.3)$
$\mathbf{v}_{A/B} = \mathbf{v}_A$
$\mathbf{v}_{A/B} = (-3)$
Since $\mathbf{v}_{A/B} = (-3)$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (10)
t + (10)
(10) m/s
(3.66j) m
depend | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | | | Solution
$v_A = -(9.3)$
$v_B = -(9.3)$
$v_{A/B} = v_A$
$v_{A/B} = (-3)$
Since $v_{A/B} = (-3)$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (10)
t + (10)
(10) m/s
(3.66j) m
depend | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | | | Solution
$v_A = -(9.3)$
$v_B = -(9.3)$
$v_{A/B} = v_A$
$v_{A/B} = (-3)$
Since $v_{A/B} = (-3)$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (10)
t + (10)
(10) m/s
(3.66j) m
depend | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | | | Solution
$\mathbf{v}_A = -(9.3)$
$\mathbf{v}_B = -(9.3)$
$\mathbf{v}_{A/B} = \mathbf{v}_A$
$\mathbf{v}_{A/B} = (-3)$
Since $\mathbf{v}_{A/B} = (-3)$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (10)
t + (10)
(10) m/s
(3.66j) m
depend | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ $v_B = -(9.3)$ $v_{A/B} = v_A$ $v_{A/B} = (-5)$ Since $v_{A/B}$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (10)
t + (10)
(10) m/s
(3.66j) m
depend | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | | | Solution $v_A = -(9.3)$ $v_B = -(9.3)$ $v_{A/B} = v_A$ $v_{A/B} = (-6.3)$ | :
81 m/s ² j)
81 m/s ² j)
- v _B =
3.66i + 3 | t + (10)
t + (10)
(10) m/s
(3.66j) m
depend | m/s)(c
m/s)(c
s)(-0.3d
m/s | os 60° i
os 30° i
66i + 0. | + sin 3
.366j)
answer | $0^{\circ}j)$ is the s | | | | | | | | | | | | | | | |