

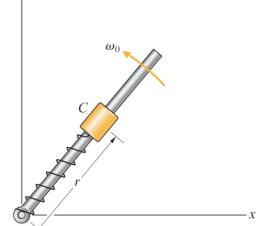
NAME DATE

WEEK:	PROBLEM:
GIVEN:	
The bar rotates in the $x-y$ plane with y	
constant angular velocity $\omega_0 = 12$ rad/s. The radial com-	

ponent of acceleration of the collar C (in m/s²) is given as a function of the radial position in meters by $a_r =$ -8r. When r = 1 m, the radial component of velocity of C is $v_r = 2$ m/s. Determine the velocity of C in terms of polar coordinates when r = 1.5 m.

Strategy: Use the chain rule to write the first term in the radial component of the acceleration as

$$\frac{d^2r}{dt^2} = \frac{dv_r}{dt} = \frac{dv_r}{dr}\frac{dr}{dt} = \frac{dv_r}{dr}v_r$$



REQUIRED:

SOLUTION:

$$a_r = \frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 = -(8 \text{ rad/s}^2)r,$$

$$\frac{d^2r}{dt^2} = \left(\left[\frac{d\theta}{dt} \right]^2 - (8 \text{ rad/s}^2) \right) r = (\left[12 \text{ rad/s} \right]^2 - \left[8 \text{ rad/s}^2 \right]) r = (\left[136 \text{ rad/s}^2 \right) r$$

Using the supplied strategy we can solve for the radial velocity

$$\frac{d^2r}{dt^2} = v_r \frac{dv_r}{dr} = (136 \text{ rad/s}^2)r$$

$$\int_{2~{\rm m/s}}^{v_r} v_r dv_r = ({\rm 136~rad/s^2}) \int_{\rm 1~m}^{\rm 1.5~m} r dr$$

