

NAME DATE

WEEK:	PROBLE	N4 .	
WEEK.	RUBLE	. 1 1	
GIVEN:			
The collar bar. The radial position of a function of θ by $r=2$ co $\theta=25^{\circ}$ and $d\theta/dt=4$ rad/s A in terms of polar coordina	s θ . At the instant show Determine the velocity	as Vn, of	
			θ
REQUIRED:			
SOLUTION:			
Solution:			
$r = 2\cos\theta, \ \dot{r} = -2\sin\theta\dot{\theta}, \ \ddot{r} = -2\sin\theta\ddot{\theta} - 2\cot\theta\dot{\theta}$	os $\theta \hat{\theta}^2$		
Using the given data we have			
$\theta=25^{\circ},\;\dot{\theta}=4,\;\ddot{\theta}=0$			
$r = 1.813, \ \dot{r} = -3.381, \ \ddot{r} = -29.00$			
$\mathbf{v} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_\theta = (-3.381\mathbf{e}_r + 7.25\mathbf{e}_\theta) \text{ m/s}$			
2			
$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\mathbf{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\mathbf{e}_{\theta} = (-58.0\mathbf{e}_r -$	27.0e _θ) m/s²		