

DATE

NAME

WEEK:	PROBLEM:			
GIVEN:			y	
A boat searching	g for underwater			
archaeological sites in the Aegean Sea and follows the path $r = 10\theta$ m, when	a moves at 4 knots	/		
(A knot is one nautical mile, or 1852	meters, per hour.)	/		
When $\theta = 2\pi$ rad, determine the box terms of polar coordinates and (b) in		/		
coordinates.				, , , , , , , , , , , , , , , , , , ,
				/ /
B				
REQUIRED:				
			+	
SOLUTION:				
Solution: The velocity along the path is				
$v = 4\left(\frac{1852 \text{ m}}{1 \text{ knot}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) = 2.06 \text{ m/s}.$				
(a) The path is $r = 10\theta$. The velocity				
$v_r = \frac{dr}{dt} = \frac{d}{dt}(10\theta) = 10\frac{d\theta}{dt}$ m/s.				
The velocity along the path is related to the components by				
$v^2 = v_r^2 + v_\theta^2 = \left(\frac{dr}{dt}\right)^2 + r^2 \left(\frac{d\theta}{dt}\right)^2 = 2.06^2.$				
At $\theta=2\pi$, $r=10(2\pi)=62.8$ m. Substitute:				
$2.06^{2} = \left(10\frac{d\theta}{dt}\right)^{2} + r^{2}\left(\frac{d\theta}{dt}\right)^{2} = (100 + 62.8^{2})\left(\frac{d\theta}{dt}\right)^{2},$				
from which $\frac{d\theta}{dt} = 0.0323 \text{ rad/s},$				
40				
$v_r = 10 \frac{dv}{dt} = 0.323 \text{ m/s}, v_\theta = r \frac{dv}{dt} = 2.032 \text{ m}$	/s			
(b) From geometry, the cartesian components are $v_x = v_r \cos \theta + v_\theta \sin \theta$, and $v_y = v_r \sin \theta + v_\theta \cos \theta$. At $\theta = 2\pi$,				
$v_x = v_r$, and $v_y = v_\theta$				