

NAME DATE

WEEK:		PROI	BLEM	:					
					_				
GIVEN:					y			,	
	The radial line								
ngular velocity	of 2 rad/s. Point F	moves alon	g the line			4 m/	s 🖊 /	2 ra	ad/s
	ed of 4 m/s. Determined of 4 m/s.					,	s / P		
					_				
						/ r'			
Dealus									
REQUIR	<u> </u>								
					0				x
SOLUTI	DN:								
olution: The angular		_	The magnitude i						
$\frac{d\theta}{dt} = \omega =$	2 rad/s,		$ \mathbf{v} = \sqrt{4^2 + 4^2}$	f = 5.66 m/s					
from which $\frac{d^2\theta}{dt^2} = 0$.		1	The acceleration	ı is					
		a	$\mathbf{i} = [-2(4)]\mathbf{e}_r +$	$+ \left[2(4)(2)\right]\mathbf{e}_{\theta} = -8\mathbf{e}_r$	+ 16e _θ (m/s ²).				
he radial velocity of the		1	The magnitude i	is					
$\frac{dr}{dt} = 4 \text{ m/s}$	ι,		$ \mathbf{a} = \sqrt{8^2 + 16}$	$\overline{6^2} = 17.89 \text{ m/s}^2$					
from which $\frac{d^2r}{dt^2} = 0$.		,							
dt ² he vector velocity is									
ne vector velocity is									
(de) (d0)	$_{1}=4\mathbf{e}_{r}+4\mathbf{e}_{\theta}$ (m/s).								
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_\theta$		1 1 1	1 1						
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									
$= \left(\frac{dr}{dt}\right) \mathbf{e}_r + r \left(\frac{d\theta}{dt}\right) \mathbf{e}_t$									