

DATE

NAME

WEEK:	PF	2 O E	3 L E	M:										
GIVEN:														
The polar coordinat — are given as functions of time in secon			ollar .	A =										
$r = 1 + 0.2t^2 \text{ ft and } \theta = 2$	2t rad			_						/		P	1	
—What are the magnitudes of the velocity	y and	accel	eratio	n –					r	//				
of the collar at $t = 2$ s?			ī				\ <u></u>				θ			
							9							
						- 4								
REQUIRED:														
SOLUTION:														
Solution: We have $ r = (1 \text{ ft}) + (0.2 \text{ ft/s}^2)t^2, \theta = (2 \text{ rad/s})t, $														
$\frac{dr}{dt} = (0.4 \text{ ft/s}^2)t, \qquad \frac{d\theta}{dt} = 2 \text{ rad/s},$														
$\frac{d^2r}{dt^2} = 0.4 \text{ ft/s}^2, \qquad \frac{d^2\theta}{dt^2} = 0$ At time $t = 2$ s, we have														
$r = 1.8 \text{ ft}, \frac{dr}{dt} = 0.8 \text{ ft/s}, \qquad \frac{d^2r}{dt^2} = 0.4 \text{ ft/s}^2,$	_													
$\theta=8 \text{ rad}, \frac{d\theta}{dt}=2 \text{ rad/s}, \qquad \frac{d^2\theta}{dt^2}=0$	-													
The components of the velocity and acceleration are	-													
$v_r = \frac{dr}{dt} = 0.8 \text{ ft/s}, v_\theta = r\frac{d\theta}{dt} = (1.8 \text{ ft})(2 \text{ rad/s}) = 3.6 \text{ ft/s},$	-													
$a_r = \frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 = (0.4 \text{ ft/s}^2) - (1.8 \text{ ft})(2 \text{ rad/s})^2 = -6.8 \text{ s}$	ft/s ² ,													
$a_{\theta} = r \frac{d^2 \theta}{dt^2} + 2 \frac{dr}{dt} \frac{d\theta}{dt} = 0 + 2(0.8 \text{ ft/s})(2 \text{ rad/s}) = 3.2 \text{ ft/s}^2.$	_													
The magnitudes are	_													
$v = \sqrt{v_r^2 + v_\theta^2} = \sqrt{(0.8 \text{ ft/s})^2 + (3.6 \text{ ft/s})^2} = 3.69 \text{ ft/s},$														
$a = \sqrt{a_r^2 + a_\theta^2} = \sqrt{(-6.8 \text{ ft/s}^2)^2 + (3.2 \text{ ft/s}^2)^2} = 7.52 \text{ ft/s}^2.$														
$v = 3.69 \text{ ft/s}, a = 7.52 \text{ ft/s}^2.$														