NAME DATE | WEEK: | | | | | PRI | DВ | LE | м: | | • | | | | | | | | | |---|--------------------------------|------------------------------------|--|-------------------------------|------------------------------|---------------------------------|---|-----------------|--|---|----|---|---|----|------------|----------|--|-----| | GIVEN | : | | | | | | | | | | | | | | | | | | | onstant angula
onent of acce
s a function of $-8r$. When r
f C is $v_r = 2$
f polar coordi | The relocation of the m/s. D | city ω n of the radial, the | he cold
he cold
l position
radial
nine the | lar C tion in comp e velo | s. The (in man) in metoonent | radi
/s²) i
ers b
of v | al co
is giv
by <i>a</i> ,
veloc | om-
ven
= | | | y | , | | | ω_0 | ? | | | | trategy: Us | se the o | hain
of th | rule to | o write
eleratio | e the | first | term | in | | | | | | c/ | 4 | | | | | $\frac{d^2}{dt}$ | $\frac{dr}{dr} = \frac{d}{dr}$ | $\frac{v_r}{lt} =$ | $\frac{dv_r}{dr}\frac{d}{dt}$ | $\frac{dr}{dt} = \frac{a}{a}$ | $\frac{lv_r}{dr}v_r$ | | ı | | | | | | A | 7 | <u></u> | | | | | REQUI | REC |): | | | | | | | | | Œ | | | r | | | | r | | | | | | | | | | | | | (c | 7 | | | | | | - x | | SOLUT | 101 | 1: |