NAME DATE | | EK: | | | _ | | • | | | LE | 2 - 1 1 | | | | • | | | | | | | | | | | | |----------------------------|---|---------------------|--------|------|--------|--------|------|-------|----|---------|--|--|--|---|----------|---|--|--|--|--|--|--|--|--|--| | G۱ | /EN: | compor
of chan
(a) W | At the instant shown, the magnitude the airplane's velocity is 130 m/s, its tangential apponent of acceleration is $a_t = -4$ m/s ² , and the rate change of its path angle is $d\theta/dt = 5^{\circ}/s$. What are the airplane's velocity and acceleration in terms of normal and tangential components? | | | | | | | | | | | | | | \ | θ | | | | | | | | | | | in (b) W | terms o
hat is th
rplane's | f norma
e instan | al and | tang | gentia | al con | npon | ents' | ? | | | | | | | | | | | | | | | | | | RE | фUII | RED | So | LUT | ION | • |