

NAME DATE

WEEK:		PROBLEM:			
GIVEN:					
 cal centrifuge to sub of 1000 g's. (a) If centrifuge to the sar tion in rpm is neces 	suppose you want to ject samples to normathe the distance from the apple is 300 mm, what sary? (b) If you want	al accelerations e center of the t speed of rota- t the centrifuge			
acceleration is neces	pm in 1 min, what cossary?	onstant angular		<u> </u>	
					-300 mm
REQUIRE	:D				
SOLUTIC	IN:				
		n 2			
(a) The normal acceleration at giving	a constant rotation rate is $a_n =$	<i>Rω</i> *,			
$\omega = \sqrt{\frac{a_n}{R}} = \sqrt{\frac{(1000)9.81}{0.3}}$	= 180.83 rad/s.				
The speed in rpm is					
$N = \omega \left(\frac{\text{rad}}{\text{s}}\right) \left(\frac{1 \text{ rev}}{2\pi \text{ rad}}\right)$	$\left(\frac{60 \text{ s}}{1 \text{ min}}\right) = 1730 \text{ rpm}.$				
(b) The angular acceleration is					
$\alpha = \frac{\omega}{t} = \frac{180.83}{60} = 3.01 \text{ rad/s}^2$					