ENGR-2060 E.M. - DYNAMICS NAME DATE | WE | EK: | - | | | | | F | R | DВ | LE | м: | | | | | | | | | | | - | |--|----------------------|------------------------|-----------------|-----------------|------------|----------|-----------|----------------|--------|-------------|-----------|----------|-----------------------|----------------------------------|-----------|-----------------|--------|--|--|--|--|---| GIV | ΕN | <u>:</u> | The | angle | θ 1 | meas | ures | the | direct | tion | | | | | | | | | | | | | | of the un
given as | it vec
a fun | ctor e
ction | relate | tive t
ime l | o the | = 2t | xis. T | lhe a
l. Wl | ngle (| θ is | | | | | | | | | | | | | | vector de | e/dt a | at <i>t</i> = | = 4 s | ? | | | | | | | | | | | | | | | | | | + | + | Ī | REC | рUI | RE | <u>D</u> | • | | | | | | | | | | | | | | | | | | + | 1 | Soi | | T. C | 7 6 1 | | | | | | | | | | | | | | | | | | | t | | lution: I | | | <u>אור</u> | • | | | | | 75. | | i- 0 | 5 | 2/2 2-22 | | (22.2-) | 0.50 | 444 | | | | | + | | | | ition: | | | | | | | when | e mod(| (x, y) (" | modulu | s") is a | ₌₄ = mod
tandard f | unction t | hat retu | ms the | | | | | + | | $=\left(\frac{d\theta}{dt}\right)\mathbf{n}$ | , | | | | | | | | | | | | | ment by t | | | which, | | | | | | | | | | | | | | | | de | e] = | - 16 (ir | no (n 5 | $841 + \frac{\pi}{2}$ | | n 58/11 = | $\frac{\pi}{2}$ | | | | | | | | ere | | | | | | | | | di | t . | - 10 (10 | .05 (0.5 | 041 T 2 |) + J sm (| 0.5541 | 2.77 | | | | | | | | | $\frac{\pi}{}$) + i | sin (a | $+\frac{\pi}{}$ | | | | | | [di | | = -8.82 | | |) + J sm (| 0.5641 | 2 // | | | | | | | | $=i\cos\left(\theta+\right)$ | | | | | | | | . 121 | [di | | | | |) + Jsm (| 0.5541 7 | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto | | | | positive | e θ. T1 | he angu | ular rat | e of | [di | | | | |) + J sm (| 0.5641 | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. T1 | he angu | ular rati | e of | [di | | | | |) + J siii (| 0.3341 | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rab | e of | [di | | | | |)+Jsii (| 0.3341 | 2// | | | | | | | | = $i cos (\theta + a)$
a unit vector
ange is | r in the | direct | ion of | positive | e θ. T1 | he angu | ular rab | e of | Ldı | | | | |)+15m(| 0.3041 | 2// | | | | | | | | = $i cos (\theta + a)$
a unit vector
ange is | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rati | e of | Ldı | | | | |)+15m(| 0.3341 | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rab | e of | | | | | |)+Jsm(| 0.3341 | 2// | | | | | | | | = $i cos (\theta + a unit vector unge is$ | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rab | e of | | | | | |) + J sm (| 0.3341 | 2 // | | | | | | | | = $i cos (\theta + a)$
a unit vectoringe is | r in the | direct | ion of | positive | e θ. TI | he angu | ular rati | e of | | | | | |) + Jsm (| 0.3341 | 2// | | | | | | | | = $i cos (\theta + a unit vector unge is$ | r in the | direct | ion of | positive | e θ. Ti | angu | ular rah | e of | | | | | |) + J sm (| 0.3341 | 2// | | | | | | | | = $i cos (\theta + a unit vector unge is$ | r in the | direct | ion of | positive | e θ. Ti | the angu | ular rate | e of | | | | | |) + J sm (| 0.3341 | 2)) | | | | | | | | = $i cos (\theta + a unit vector unge is$ | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rab | e of | | | | | |) + J sm (| 0.5541 | 2)) | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | the angu | ular rab | e of | Ldu | | | | |) + J sm (| 0.5541 | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rah | e of | Ldu | | | | |) + J sm (| 0.5541 | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | the angu | ular rab | e of | Ldu | | | | |) + J sm (| 0.5541 | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | the angu | ular rah | e of | | | | | |) + J sm (| | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. TI | he angu | ular rah | e of | | | | | |) + J sm (| | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rah | e of | | | | | |) + J sm (| | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rah | e of | | | | | |) + J sm (| | 2// | | | | | | | | $= i \cos (\theta + $ a unit vecto ange is | r in the | direct | ion of | positive | e θ. TI | he angu | ular rah | e of | | | | | |) + J sm (| | 2// | | | | | | | | here $= i \cos \left(\theta + \frac{1}{2} \theta + \frac{1}{2} \cos \theta + \frac{1}{2} \cos \theta + \frac{1}{2} \cos \theta + \frac{1}{2} \cos \left(\theta + \frac{1}{2} \cos \theta \frac$ | r in the | direct | ion of | positive | e θ. Ti | he angu | ular rah | e of | | | | | |) + J sm (| | 2// | | | | | | |