

NAME DATE

WEEK		PRO	DBLEM	:						
GIVE	1 :									
		dy								W
	If $y = 150 \text{ mm}$,					- [
$\frac{d^2y}{dt^2} = 0, \text{ wl}$	nat are the magnitude	es of the veloc	city and							
acceleration	of point P?								P	111_
	+ + + + + + +									1 y
							300 n	nm		
REDL	IIRED:									
Soll	ITION:									
Solution: The $x^2 + y^2$, from which	equation for the location of the h $x=(R^2-y^2)^{\frac{1}{2}}=0.2598$ m,	point P is $R^2 =$								
	= -0.1732 m/s,									
$\frac{d^2x}{dt^2} = -\frac{1}{x} \left(\frac{dy}{dt}\right)^2$	$+\frac{y}{x^2}\left(\frac{dx}{dt}\right)\left(\frac{dy}{dt}\right)-\left(\frac{y}{x}\right)\left(\frac{dx}{dt}\right)$	$\left(\frac{t^2y}{dt^2}\right)$								
= -0.4619 m										
The magnitudes are	:									
$(dx)^2$	$+\left(\frac{dy}{dt}\right)^2 = 0.3464 \text{ m/s}$									
$ v_P = \sqrt{\left(\frac{dt}{dt}\right)}$	$\left(\frac{dt}{dt}\right) = 0.3464 \text{ m/s}$									
$\int \left(d^2x\right)^2$	$+\left(\frac{d^2y}{dt^2}\right)^2 = 0.4619 \text{ m/s}^2$									
$ a_p = \sqrt{\left(\frac{dt^2}{dt^2}\right)}$	$+\left(\frac{1}{dt^2}\right) = 0.4019 \text{ m/s}$									