Newton's 2nd Law: Double Pendulum

6.1-1 Introduction

[1] Consider a Double Pendulum consisting of a Link and a Plate [2, 3]. The system is released from an initial configuration in which the Link forms 45° with a vertical plane and the Plate forms 30° with the Link.

In this section, we'll perform a simulation for this system and demonstrate how the dynamic behavior is governed by Newton's 2nd Law:

$$\sum F_{x} = m\overline{a}_{x}^{!}, \quad \sum F_{y} = m\overline{a}_{y}, \quad \sum M_{G} = \overline{I}\alpha$$
 (1)

where XY-plane is the motion plane, m is the mass of the body, \overline{a}_x and \overline{a}_y are the acceleration components at the mass center, lpha is the angular acceleration of the body, and \overline{I} is the moment of inertia with respect to an axis perpendicular to the motion plane and passing through the mass center G. The SI unit for \overline{I} is kg-m².

The geometry details of the Link and the Plate (including the locations of mass center and the moment of inertia \overline{I}) are not shown in this page, but will be illustrated later.

6.1-4 Create an Assembly: Pendulum

6.1-5 Create a Motion Study and Set Up Gravity

6.1-6 Calculate and Animate Results

6.1-7 Results: Linear and Angular Accelerations of the Plate

6.1-8 Results: Angular Displacement of the Plate

6.1-9 Results: Reaction Forces at Concentric

6.1-10 Newton's 2nd Law: Plate

[1] Newton's 2nd Law for a rigid body in plane motion (Eq. 6.1-1(1), page 122) states that the external forces and moments acting on a rigid body are equivalent to the **effective force and moments** acting on the particle. The effective force of a rigid body is simply the product of its mass and the acceleration at the mass center; the effective moment of a rigid body is the product of its moment of inertia \overline{I} and the angular acceleration α .

The external forces acting on the **Plate** and the effective forces and moment on the **Plate** are shown in [2-8]. It's easy to confirm that these forces and moments indeed satisfy Newton's 2nd Law; i.e., in X-direction,

$$-0.730465 \approx (0.14980365)(-4.87615)$$

In Y-direction,

$$1.21569 - (0.14980365)(9.80665) \approx (0.14980365)(-1.69145)$$

Taking the moment about the mass center, we have

 $(0.730465)(0.0650852\cos 56.0681^{\circ}) - (1.21569)(0.0650852\sin 56.0681^{\circ}) \approx -(4.0541872 \times 10^{-4})(96.4685)$

Wrap Up

[9] Save all files and exit SOLIDWORKS.#